Equation-of-state Model for Shock Compression of Hot Dense Matter
نویسنده
چکیده
A quantum equation-of-state model is presented and applied to the calculation of high-pressure shock Hugoniot curves beyond the asymp-totic fourfold density, close to the maximum compression where quantum effects play a role. An analytical estimate for the maximum attainable compression is proposed. It gives a good agreement with the equation-of-state model.
منابع مشابه
Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملExtension of the Dense System Equation of State to Electrolyte Solutions
In this work we have applied the Dense System Equation of State (DSEOS) to electrolyte solutions. We have found that this equation of state can predict the density of electrolyte solutions very accurately. It has been tested for different electrolytes solutions at different temperatures and compositions. A hypothetical binary model has been applied to find the dependencies of parameters of ...
متن کاملDynamic recrystallization kinetics of AISI 403 stainless steel using hot compression test
In this work dynamic recrystallization behavior of AISI 403 martensitic stainless steel was studied using hot compression tests over temperature range of 900 C -1200 C and strain rate range of 0.001 s-1 - 1 s-1. The obtained flow curves showed that the hot compression behavior of the alloy is controlled by dynamic recrystallization. The flow stress and strain corresponding to the critical, pe...
متن کاملExcited electron dynamics modeling of warm dense matter.
We present a model (the electron force field, or eFF) based on a simplified solution to the time-dependent Schrödinger equation that with a single approximate potential between nuclei and electrons correctly describes many phases relevant for warm dense hydrogen. Over a temperature range of 0 to 100,000 K and densities up to 1 g/cm(3), we find excellent agreement with experimental, path integra...
متن کاملBurnett-Cattaneo continuum theory for shock waves.
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008